Word Alignment with Stochastic Bracketing Linear Inversion Transduction Grammar

نویسندگان

  • Markus Saers
  • Joakim Nivre
  • Dekai Wu
چکیده

The class of Linear Inversion Transduction Grammars (LITGs) is introduced, and used to induce a word alignment over a parallel corpus. We show that alignment via Stochastic Bracketing LITGs is considerably faster than Stochastic Bracketing ITGs, while still yielding alignments superior to the widelyused heuristic of intersecting bidirectional IBM alignments. Performance is measured as the translation quality of a phrase-based machine translation system built upon the word alignments, and an improvement of 2.85 BLEU points over baseline is noted for French– English.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm for Simultaneously Bracketing Parallel Texts by Aligning Words

We describe a grammarless method for simultaneously bracketing both halves of a parallel text and giving word alignments, assuming only a translation lexicon for the language pair. We introduce inversion-invariant transduction grammars which serve as generative models for parallel bilingual sentences with weak order constraints. Focusing on Wansduction grammars for bracketing, we formulate a no...

متن کامل

A Systematic Comparison between Inversion Transduction Grammar and Linear Transduction Grammar for Word Alignment

We present two contributions to grammar driven translation. First, since both Inversion Transduction Grammar and Linear Inversion Transduction Grammars have been shown to produce better alignments then the standard word alignment tool, we investigate how the trade-off between speed and end-to-end translation quality extends to the choice of grammar formalism. Second, we prove that Linear Transd...

متن کامل

An Algorithm for Simultaneously Bracketing Parallel Texts by Aligning Words

We describe a grammarless method for simultaneously bracketing both halves of a parallel text and giving word alignments, assuming only a translation lexicon for the language pair. We introduce inversion-invariant transduction grammars which serve as generative models for parallel bilingual sentences with weak order constraints. Focusing on transduction grammars for bracketing, we formulate a n...

متن کامل

Fertility-based Source-Language-biased Inversion Transduction Grammar for Word Alignment

We propose a version of Inversion Transduction Grammar (ITG) model with IBM-style notation of fertility to improve word-alignment performance. In our approach, binary context-free grammar rules of the source language, accompanied by orientation preferences of the target language and fertilities of words, are leveraged to construct a syntax-based statistical translation model. Our model, inheren...

متن کامل

Stochastic Inversion Transduction Grammars, with Application to Segmentation, Bracketing, and Alignment of Parallel Corpora

We introduce (1) a novel stochastic inversion transduction grammar formalism for bilingual language modeling of sentence-pairs, and (2) the concept of bilingual parsing with potential application to a variety of parallel corpus analysis problems. The formalism combines three tactics against the constraints that render finite-state transducers less useful: it skips directly to a context-free rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010